ARC	Proportional Directional Control PRM2-04 Valves	$\begin{gathered} \text { HA } 5105 \\ 6 / 2012 \end{gathered}$
	Size 04 • $\mathrm{p}_{\max }$ up to 320 bar • $\mathrm{Q}_{\max }$ up to $20 \mathrm{~L} / \mathrm{min}$	$\begin{gathered} \text { Replaces } \\ \text { HA } 51055 / 2009 \end{gathered}$

High reliability

\square Simple replacement of the exciting coils including electronics without opening the hydraulic circuitsContinuous flow control in both directionsInstallation dimensions to DIN 24340 / ISO 4401 / CETOP RP121-H

Functional Description

The proportional directional valve consists of a cast-iron housing, a special control spool, two centering springs with supporting washers and one or two proportional solenoids. A control box, which comprises one or two electronic control cards, depending on the number of the controlled solenoids, can be mounted onto either solenoid. With the model with two solenoids, the solenoid mounted apposite the control box is connected with the box by means of a DIN connector, a two-cored cable and a bushing. The connection of the control box with the supply source and with the control signal is realized by means of a 4 -pin connector, type M12 $\times 1$. The solenoid coils, including the control box, can be turned in the range of $\pm 90^{\circ}$.
The electric control unit supplies the solenoid with current, which varies with the control signal. The solenoid shifts the control spool to the required position, proportional to the control current.

The electronic control unit provides the following adjustment possibilities: Offset, Gain, rise and drop-out time of the ramp generator, frequency (2 frequencies) and amplitude of the dither signal generator. The correct function of the control unit is signaled by LED-diodes.
Stabilized voltage $+10 \mathrm{~V}(+5 \mathrm{~V}$ for 12 V voltage) is also available for the user. By the use of this voltage, a voltage control signal can be made by means of a potentiometer $\geq 1 \mathrm{k} \Omega$.
The electronic control card enables voltage or current control to be used, according to the positions of the switches SW1 to SW3 (see table on page 6).
The basic surface treatment of the valve housing is phosphate coated and the operating solenoids are zinc coated.

Ordering Code

Proportional Directional Control Valve

Nominal size

3Z12B

$3 Y 12$

\square
 - \square
\square
without designation without electronics
EK connection by connector M12 x 1 (4-pin connector) (supplied with counterpart)

4
$4 \mathrm{~L} / \mathrm{min}$
$8 \mathrm{~L} / \mathrm{min}$
$12 \mathrm{~L} / \mathrm{min}$

[^0]

Flow Characteristic with Integrated Electronics

Flow Characteristic without Integrated Electronics

The coil current which initializes the flow through the proportional directional valve can differ due to the production tolerances about in a range of $\pm 6 \%$ of the limit current.

Transient Characteristic

Measured at $\Delta \mathrm{p}=10$ bar, $v=32 \mathrm{~mm}^{2} / \mathrm{s} ; \mathrm{Q}=80 \% \mathrm{Q}_{\mathrm{n}}$

— — - the control signal course of the integrated electronics

Steady spool position $\mathbf{s}_{\mathbf{s}}[\%]$	$\mathbf{t}_{\mathbf{2}}[\mathbf{m s}]$	$\mathbf{t}_{\mathbf{4}}[\mathbf{m s}]$
100	75	70
75	70	55
50	50	40
25	35	25

The values in table have only an informative character.
The times of the transient characteristics at pressure or flow control will be in a particular hydraulic circuit always longer.

Component Arrangement on the Electronic Card

Description basic subplatte

PIN	Description
$\mathbf{1}$	$+24 \mathrm{~V}\left(\mathrm{U}_{\mathrm{cc}}\right)(+12 \mathrm{~V})$
$\mathbf{2}$	control
$\mathbf{3}$	0 V
$\mathbf{4}$	$+10 \mathrm{~V}(+5 \mathrm{~V})$

Table of the Switch Configuration for the Control Signal Choices

Designation of the basic manufacture setting.
The ramp functions are adjusted on their minimum values, the dither is set to the optimal value with respect to hysteresis. Offset and Gain are adjusted according to the characteristic on page 3 and 4 . The manufacturer does not recommend these adjusted values to be changed.

* Input signal level for the 12 V electronic unit.

Block Diagram

STABILIZED VOLTAGE FOR EXTERNAL USE

CONROL

OONTROL CONNECTION
MASTER AND SLAVE

[^1]
1 Factory setting

1.1 Control with external voltage source $0 \ldots 10 \mathrm{~V}(0 \ldots 5 \mathrm{~V})$ or with external potentiometer $\mathrm{R}>1 \mathrm{k} \Omega$

Notice:

The control signal must have the same ground potential as the supply source.

Master card for solenoid a (b)

solenoid a (b)

$+24 \mathrm{~V}(+12 \mathrm{~V})$

Factory set values:
Control signal: 0-10 V (0-5V)
Dither: frequency 90 Hz amplitude - optimum
Ramps: 0.05 s
Offset, Gain: according to the characteristics on page 3, 4

Valve PRM2-042 (with one solenoid)

2 Other control possibilities

2.1 Control with external source 0 ... 5 V

Notice:

The control signal must have the same ground potential as the supply source.

Master card for solenoid a (b)

For the factory setting modification for this case of application, the following steps are required:

1. Unscrew the electronics cover
2. Carefully remove the Master card
3. Flip the switch SW3 in position shown in the picture
4. Put in the Master card and fix the electronics cover
5. Connect the voltage +24 V from an external supply source to terminals 1 and 3 of the connector
6. Connect the control voltage $0 \ldots 5 \mathrm{~V}$ from an external source to terminals 2 and 3 of the connector

2.2 Control with external source 0 ... 20 mA

Notice:

The control signal must have the same ground potential as the supply source.

Master card for solenoid a (b)

For the factory setting modification for this case of application, the following steps are required:

1. Unscrew the electronics cover
2. Carefully remove the Master card
3. Flip the switch SW1 and SW3 in position shown in the picture
4. Put in the Master card and fix the electronics cover
5. Connect the voltage $+24 \mathrm{~V}(+12 \mathrm{~V})$ from an external supply source to terminals 1 and 3 of the connector
6. Bring the control current $0 \ldots 20 \mathrm{~mA}$ from an external source to terminals 2 and 3 of the connector

Valve PRM2-042 (with one solenoid)

2.3 Control with external source 4 ... 20 mA

Notice:

The control signal must have the same ground potential as the supply source.

Master card for solenoid a (b)

For the factory setting modification for this case of application, the following steps are required:

1. Unscrew the electronics cover
2. Carefully remove the Master card
3. Flip the switch SW1, SW2 and SW3 in position shown in the picture
4. Put in the Master card and fix the electronics cover
5. Connect the voltage $+24 \mathrm{~V}(+12 \mathrm{~V})$ from an external supply source to terminals 1 and 3 of the connector
6. Bring the control current $4 \ldots 20 \mathrm{~mA}$ from an external source to terminals 2 and 3 of the connector

3 Factory setting

3.1 Control with external source $0 \pm 10 \mathrm{~V}(0 \pm 5 \mathrm{~V})$

Notice:

The control signal must have the same ground potential as the supply source.

Master card for solenoid a (b)

Slave card for solenoid b (a)

Factory set values:
Control signal: $0 \pm 10 \mathrm{~V}(0 \pm 5 \mathrm{~V})$ amplitude - optimum

Ramps:

 0.05 sOffset, Gain: according to the characteristics on page 3, 4

Valve PRM2-043 (with two solenoids)

3.2 Other control possibilities

Control $\mathrm{U}_{\mathrm{cc}} / \mathbf{2} \pm 10 \mathrm{~V}\left(\mathrm{U}_{\mathrm{cc}} / \mathbf{2} \pm 5 \mathrm{~V}\right)$ external potentiometer $\mathrm{R}>1 \mathrm{k} \Omega$

Master card for solenoid a (b)

Slave card for solenoid b (a)

For the factory setting modification for this case of application, the following steps are required:

1. Unscrew the electronics cover
2. Carefully remove the Master card
3. Flip the switch SW1 in position shown in the picture
4. Put in the Master card and fix the electronics cover
5. Connect the voltage $+24 \mathrm{~V}(+12 \mathrm{~V})$ from an external supply source to terminals 1 and 3 of the connector

Notice: The factory setting of the ramp functions is to the minimum values.

*The value has only an informative character with respect to the particular type of the proportional directional valve (see page 4)

Dither Adjustment

Notice: The dither is adjusted with regard to the minimum hysteresis.

Amplitude - potentiometer (dither) (0-30\%)

Adjustment of Offset, Gain Parameters

Notice: The factory setting of the Offset and Gain parameters is specific for the solenoids used. The manufacturer does not recommend this setting to be changed.

Nominal supply voltage of electronics [V]	Area insensible to control signal $\mathbf{u}_{\mathrm{xx}}[\%]$
12	$1 \ldots 3$
24	$0.5 \ldots 2$

PRM2-042..../..-..

Functional symbols

2Z51, 2Y51

Functional symbols

2Z11, 2Y11

1 Solenoid a
2 Solenoid b
3 Name plate
4 Square ring 7.65×1.68 (4 pcs.) supplied in delivery packet
54 mounting holes
6 Manual override
7 Solenoid fixing nut (Nut torque 3 Nm)

PRM2-043..../.-...

Functional symbols
3Z11, 3Z12, 3Y11, 3 Y12

1 Solenoid a
2 Solenoid b
3 Name plate
4 Square ring 7.65×1.68 (4 pcs .)
supplied in delivery packet
54 mounting holes
6 Manual override
7 Solenoid fixing nut (Nut torque 3 Nm)

Required surface finish of interface.

PRM2-042..../..-.EK.

Functional symbols
2Z51, 2Y51

Functional symbols

2Z11, 2Y11

1 Solenoid a
2 Solenoid b
3 Name plate
4 Square ring 7.65×1.68 (4 pcs.) supplied in delivery packet
54 mounting holes
6 Manual override
7 Solenoid fixing nut (Nut torque 3 Nm)
8 4-pin connector M12 $\times 1$ for external supply voltage

PRM2-043..../..-.EK.

Functional symbols
3Z11, 3Z12, 3Y11, 3Y12

Functional symbols

3Z11B, 3Z12B, 3Y11B, 3Y12B

1 Solenoid a
2 Solenoid b
3 Name plate
4 Square ring 7.65×1.68 (4 pcs.) supplied in delivery packet
54 mounting holes
6 Manual override
7 Solenoid fixing nut (Nut torque 3 Nm)
8 4- pin connector M12 $\times 1$ for external supply voltage

1. Solenoid coil

Nominal supply voltage [V]	Ordering number
12	16186100
24	16186200

2. Solenoid fixing nut + sealing ring

Model of the nut	Sealing ring	Ordering number
Standard nut	$18 \times 1,5$	15874500

3. Connector plug to EN 175301-803

Type designation	Type	Maximum input voltage	Connector plug A gray	Connector plug B black	
			Ordering number		
K5	without rectifier $-\mathrm{M} 16 \times 1.5$, (bushing bore $\varnothing 4-6 \mathrm{~mm}$)	230 V DC	16202600	16202500	

4. Set of seals

Type	Dimensions, number		Ordering number
Standard - NBR 70	7.65×1.68 (4 pcs)	16×2 (2 pcs)	15873800
Viton	7.65×1.68 (4 pcs)	16×2 (2 pcs)	15874400
5. Fixing bolts - set			
Dimensions, number	Tightening torque		Ordering number
M5 x 35 DIN 912-10.9 (4 pcs)	5 Nm		15874600
6. Connector		Ordering number	
M12 $\times 1$ (4-pin connector)		358358904012	

Caution!

- The packing foil is recyclable.
- The protective plate can be returned to manufacturer.
- Mounting bolts M5 x 35 DIN 912-10.9 or studs must be ordered separately. Tightening torque of the bolts is 5 Nm .
- The technical information regarding the product presented in this catalogue is for descriptive purposes only. It should not be construed in any case as a guaranteed representation of the product properties in the sense of law.

ARGO-HYTOS s.r.o. CZ-543 15 Vrchlabí

Tel.: +420-499-403111, Fax: +420-499-403421
E-mail: sales.cz@argo-hytos.com
www.argo-hytos.com

[^0]: * Model for cylinders with asymmetric piston rod, piston area ratio 1:2

[^1]: 6

